1.

In how many ways can 15 identical blankets be distributed among sixbeggars such that everyone gets at least one blanket and tow particularbeggars get equal blankets and another three particular beggars get equalblankets.

Answer» The number of ways of distributing blankets is equal to the number of solutions of the equations `3x+2y+z=15`.
where `xge1,yge1,zge1` which is equal to coefficient of `alpha^(15)` in
`(alpha^(3)+alpha^(6)+alpha^(9)+alpha^(12)+alpha^(15)+ . ..)xx(alpha^(2)+alpha^(4)+alpha^(6)+alpha^(8)+alpha^(10)+alpha^(12)+alpha^(14)+ . .)`
`xx(alpha+alpha^(2)+alpha^(3)+ . .+alpha^(15)+ . . .)`
=Coefficient of `alpha^(9)` in `(1+alpha^(3)+alpha^(6)+alpha^(9))xx(1+alpha^(2)+alpha^(4)+alpha^(6)+alpha^(8))`
`xx(1+alpha+alpha^(2)+alpha^(3)+alpha^(4)+alpha^(5)+alpha^(6)+alpha^(7)+alpha^(8)+alpha^(9))` [negletcing higher powers]
=Coefficient of `alpha^(9)` in `(1+alpha^(2)+alpha^(4)+alpha^(6)+alpha^(8)+alpha^(3)+alpha^(5)+alpha^(7)+alpha^(9)+alpha^(6)+alpha^(8)+alpha^(9))xx(1+alpha+alpha^(2)+alpha^(3)+alpha^(4)+alpha^(5)+alpha^(6)+alpha^(7)+alpha^(8)+alpha^(9))` [neglecting higher powers]
`=1+1+1+1+1+1+1+1+1+1+1+1=12`
Case II If the inequation
`x_(1)+x_(2)+x_(3)+ . .+x_(m)len` . .. (i)
[when the required sum is not fixed]
In this case, we introduce a dummy variable `x_(m+1)`. so that,
`x_(1)+x_(2)+x_(3)+ . ..+x_(m)+x_(m+1)=n`
`x_(m+1)ge0`
Here, the number of sols of eqs. (i) and (ii) will be same.


Discussion

No Comment Found

Related InterviewSolutions