

InterviewSolution
Saved Bookmarks
1. |
In the adjacent diagram, CP represents a wavefront and AO & BP, the corresponding two rays. Find the condition on `theta` for constructive interference at P between the ray BP and reflected ray OP. A. `costheta=(3lamda)/(2d)`B. `costheta=(lamda)/(4d)`C. `sectheta-costheta=(lamda)/(d)`D. `sectheta-costheta=(4lamda)/(d)` |
Answer» Correct Answer - B In `DeltaOPR,(PR)/(OP)=costhetaimpliesOP=(d)/(costheta)` in `DeltaCOPcos2theta=(OC)/(OP)` ltbr. `impliesOC=OPcos2theta=(dcos2theta)/(costheta)` So path difference `=CO+OP+(lamda)/(2)` `=(dcos2theta)/(costheta)+(d)/(costheta)+(lamda)/(2)` `=(d(2cos^(2)theta-1))/(costheta)+(d)/(costheta)+(lamda)/(2)=2dcostheta+(lamda)/(2)` Now for constructive interference at P between B P and OP, path difference `=nlamda` `implies2dcostheta+(lamda)/(2)=nlamdaimplies2dcostheta=(n-(1)/(2))lamda` `impliescostheta=((2n-1)/(4d))lamda`: For `n=1,costheta=(lamda)/(4d)` |
|