1.

In the adjoining figure, BC is a diameter of a circle with centre O. If AB and CD are two chords such that AB || CD, prove that AB = CD.

Answer»

Construct OL ⊥ AB and OM ⊥ CD

Consider △ OLB and △ OMC

We know that ∠OLB and ∠OMC are perpendicular bisector

∠OLB = ∠OMC = 90o

We know that AB || CD and BC is a transversal

From the figure we know that ∠OBL and ∠OCD are alternate interior angles

∠OBL = ∠OCD

So we get OB = OC which is the radii

By AAS congruence criterion

△ OLB ≅ △ OMC

OL = CM (c. p. c. t)

We know that the chords equidistant from the centre are equal

So we get

AB = CD

Therefore, it is proved that AB = CD.



Discussion

No Comment Found

Related InterviewSolutions