InterviewSolution
Saved Bookmarks
| 1. |
In the expression `P =E I^2 m^(-5) G^(-2),` E, m, I and G denote energy, mass, angular momentum and gravitational constant, respectively. Show that P is a dimensionless quantity. |
|
Answer» `"Given, expression is "P=EL^(2)m^(-5)G^(-2)` `"where E is energy "[E]=[ML^(2)T^(-2)]` `"m is mass "[m]=[M]` `"L is angular momentum "[L]=[ML^(2)T^(-1)]` `"G is gravitational constant "[G]=[M^(-1)L^(3)T^(-2)]` Substituting dimensions of each term in the given expression, `[P]=[ML^(2)T^(-2)]xx[ML^(2)T^(_1)]^(2)xx[M]^(-5)xx[M^(-1)L^(3)T^(-2)]^(-2)` `=[M^(1+2-5+2)L^(2+4-6)T^(-2-2+4)]=[M^(0)L^(0)T^(0)]` Therefore, P is a dimensionless quantity. |
|