1.

In the fig.given, DE ∥ BC such that AE = (\(\frac{1}{4}\))AC. If AB = 6 cm, find AD.

Answer»

Given: 

DE∥BC 

AE = (\(\frac{1}{4}\))AC 

AB = 6 cm. 

Required to find: AD.

In ΔADE and ΔABC

We have, 

∠A = ∠A  [Common] 

∠ADE = ∠ABC [Corresponding angles as AB||QR with PQ as the transversal] 

⇒ ΔADE ∼ ΔABC [By AA similarity criteria] 

Then, \(\frac{AD}{AB}\) = \(\frac{AE}{AC}\) [Corresponding Parts of Similar Triangles are propositional] 

\(\frac{AD}{6}\)= \(\frac{1}{4}\) 

4 x AD = 6 

AD =\(\frac{6}{4}\) 

Therefore, AD = 1.5 cm



Discussion

No Comment Found

Related InterviewSolutions