1.

In the given figure, O is the centre of a circle in which ∠OAB = 20° and ∠OCB = 55°. Find(i) ∠BOC,(ii) ∠AOC.

Answer»

(i) We know that OB = OC which is the radius

The base angles of an isosceles triangle are equal

So we get

∠OBC = ∠OCB = 55o

In △ BOC

Using the angle sum property

∠BOC + ∠OCB + ∠OBC = 180o

By substituting the values

∠BOC + 55o + 55o = 180o

On further calculation

∠BOC = 180o – 55o – 55o

By subtraction

∠BOC = 180o – 110o

So we get

∠BOC = 70o

(ii) We know that OA = OB which is the radius

The base angles of an isosceles triangle are equal

So we get

∠OBA= ∠OAB = 20o

In △ AOB

Using the angle sum property

∠AOB + ∠OAB + ∠OBA = 180o

By substituting the values

∠AOB + 20o + 20o = 180o

On further calculation

∠AOB = 180o – 20o – 20o

By subtraction

∠AOB = 180o – 40o

So we get

∠AOB = 140o

We know that

∠AOC = ∠AOB – ∠BOC

By substituting the values

∠AOC = 140o – 70o

So we get

∠AOC = 70o



Discussion

No Comment Found

Related InterviewSolutions