1.

`int_(0)^(4)(x+e^(2x))dx`

Answer» हम जानते हैं
`int_(1)^(b)f(x)dx=underset(hrarr0)(lim)h[f(a)+f(a+h)+f(a+2h)+…+f{a+(n-1)h}]`
जहाँ,`" "nh=b-a`
`int_(0)^(4)(x+e^(2x))dx` के लिये,
यहाँ, `a=0, b= 4` और `nh=4` और `f(x)=(x+e^(2x))`
`therefore" "int_(0)^(4)f(x)dx=underset(hrarr0)(lim)h[f(0)+f(0+h)+f(0+2h)+...+f{0+(n-1)h}]`
`rArr int_(0)^(4)(x+e^(2x))dx=underset(hrarr0)(lim)h[1+(h+e^(2h))+(2h+e^(4h))+...+(n-1)h+e^(2(n-1)h)]`
`" "=underset(hrarr0)(lim)h{h+2h+3h+...+(n-1)h}+{1+e^(2h)+e^(4h)+...+e^(2(n-1)h)}`
`=underset(hrarr0)(lim)h[{1+2+3+...+(n-1)}+{1+e^(2h)+e^(4h)+...+e^(2nh-2h)}]`
`=underset(hrarr0)(lim)h[h((n-1)n)/(2)+1{((e^(2h))^(n)-1)/(e^(2h-1))}]`
`=underset(hrarr0)(lim){h^(2)((n-1)n)/(2)+h((e^(2nh)-1))/(2^(2h)-1)}`
`=underset(hrarr0)(lim)((nh-h)(nh))/(2)+underset(hrarr0)(lim)((e^(2))^(4)-1)/((e^(2h)-1)/(2h)xx2)`
`=underset(hrarr0)(lim){((4-h)4)/(2)+(e^(8)-1)/(2)}(because underset(xrarr0)(lim)(e^(x)-1)/(x)=1)`
`=(4xx4)/(2)+(e^(8)-1)/(2)`
`=(8-(1)/(2))+(e^(8))/(2)=(15+e^(8))/(2)`


Discussion

No Comment Found