1.

` int[3x+5]/[x^3-x^2-x+1].dx`

Answer» `(x^(3)-x^(2)-x-1)=x^(2)(x-1)-(x-1)-=(x-1)(x^(2)-1)=(x-1)^(2)(x+1).`
`Let (3x+5)/((x^(3)-x^(2)-x-1))=(3x+5)/((x-1)^(2)(x+1))=(A)/((x-1))+(B)/((x-1)^(2))+( C)/((x+1))`
`implies (3x+5)-=A(x-1)(x+1)+B(x+1)+C(x-1)^(2).`
Putting `x=1` on both sides of (i) we get `B=4.`
Putting `x=-1` on both sides of `(i)`, we get `C=(1)/(2).`
Comparing the coefficient of `x^(2)` on both sides of (i) , we get
`A+C=0implies A=-C=(-1)/(2)`
`therefore ((3x+5))/((x^(3)+x^(2)+x+1))=(-1)/(2(x-1))+(4)/((x-1)^(2))+(1)/(2(x+1))`
`implies ((3x+5))/((x^(3)-x^(2)-x+1))dx=-(1)/(2)int(dx)/((x-1))+4int(dx)/((x-1))^(2)+(1)/(2)int(dx)/((x+1))=-(1)/(2)log|x-1|-(4)/((x-1))+(1)/(2)log|x+1|+C.`


Discussion

No Comment Found