1.

`int(dx)/(xsqrt(x^(6)+1))` equalsA. `sec^(-1)x^(3)+C`B. `(1)/(6)log((sqrt(x^(6)+1)-1)/(sqrt(x^(6)+1)+1))+C`C. `(1)/(3)log((sqrt(x^(3)+1)-1)/(sqrt(x^(3)+1)+1))+C`D. `(1)/(3)log((sqrt(x^(3)+1)+1)/(sqrt(x^(3)+1)-1))+C`

Answer» Correct Answer - B
`I=int(dx)/(xsqrt(x^(6)+1))."Put "x^(6)+1=v^(2)`
`rArr" "6x^(5)dx=2vdv`
`therefore" "I=(1)/(2)int(v)/((v^(2)-1))dv`
`=(1)/(3)int(dv)/(v^(2)-1)=(1)/(6)log((sqrt(x^(6)+1)-1)/(sqrt(x^(6)+1)+1))+C`


Discussion

No Comment Found

Related InterviewSolutions