1.

`int (" In" x)^(-1) dx - int ("In" x)^(-2) dx` is equal toA. `x ("In " x)^(-1) + c`B. `x("In " x)^(-2) + c`C. `x(" In "x) +c`D. `x("In " x)^(2) + c`

Answer» Correct Answer - A
`int (l nx)^(-1) dx - int (l n x)^(-2) dx`
`= int [(1)/(l nx) - (1)/((l nx)^(2))].dx`
Put `l nx = t rArr x = e^(t)`
`dx = e^(t).dt`
`:. int [(1)/(l nx) - (1)/((l nx)^(2))] dx = int ((1)/(t) - (1)/(t^(2))) .e^(t).dt`
`= int e^(t) .((1)/(t) - (1)/(t^(2))) .dt`
`= (e^(t))/(t) + c = (x)/(l nx) + c`
`= x(l nx)^(-1) + c`


Discussion

No Comment Found

Related InterviewSolutions