1.

Let a^(2)+b^(2)=a^(2)+beta^(2)=2. Then show that the maximum value of S=(1-alpha)(a-b)+(1-alpha)(1-beta) is 8.

Answer»

SOLUTION :Let `alpha=sqrt(2)cos THETA, b=sqrt(2)sin theta`.
`alpha=sqrt(2)cos phi, beta=sqrt(2)sin phi`
`RARR S=2-2(sin(theta+pi//4))+sin(phi+pi//4)+2[cos(theta-phi)]`
Maximum value OCCURS when `theta=phi=5pi//4`
`rArr S_("max")=2[-1-1]+2=8`


Discussion

No Comment Found

Related InterviewSolutions