InterviewSolution
Saved Bookmarks
| 1. |
Let a^(2)+b^(2)=a^(2)+beta^(2)=2. Then show that the maximum value of S=(1-alpha)(a-b)+(1-alpha)(1-beta) is 8. |
|
Answer» SOLUTION :Let `alpha=sqrt(2)cos THETA, b=sqrt(2)sin theta`. `alpha=sqrt(2)cos phi, beta=sqrt(2)sin phi` `RARR S=2-2(sin(theta+pi//4))+sin(phi+pi//4)+2[cos(theta-phi)]` Maximum value OCCURS when `theta=phi=5pi//4` `rArr S_("max")=2[-1-1]+2=8` |
|