1.

Let a, b, c be real numbers, not all of them are equal. Prove that if a + b + c = 0, then a2 + ab + b2 = b2 + bc + c2 = c2 + ca + a2.Prove the converse, if a2 + ab + b2 = b2 + bc + c2 = c2 = ca + a2, then a + b + c = 0.

Answer»

I. a2 + ab + b2 = (– b – c)2 + (– b – c) b + b2     {as a + b + c = 0, a = – b – c}

= (b2 + c2 + 2bc) – b2 – bc + b2

= b2 + c2 + bc

Similarly b2 + c2 + bc = c2 + ca + a2

∴ a2 + ab + b2 = b2 + c2 + bc = c2 + a2 + ac.

II. a2 + ab + b2 = b2 + bc + c2

a2 + ab – bc – c2 = 0

a2 – c2 + b (a – c) = 0

(a – c) (a + c + b) = 0

a – c = 0 or a + b + c = 0

as a – c = 0 is not possible as a, b, c are not equal.

∴ a + b + c = 0.



Discussion

No Comment Found

Related InterviewSolutions