

InterviewSolution
Saved Bookmarks
1. |
Let a, b, c be real numbers, not all of them are equal. Prove that if a + b + c = 0, then a2 + ab + b2 = b2 + bc + c2 = c2 + ca + a2.Prove the converse, if a2 + ab + b2 = b2 + bc + c2 = c2 = ca + a2, then a + b + c = 0. |
Answer» I. a2 + ab + b2 = (– b – c)2 + (– b – c) b + b2 {as a + b + c = 0, a = – b – c} = (b2 + c2 + 2bc) – b2 – bc + b2 = b2 + c2 + bc Similarly b2 + c2 + bc = c2 + ca + a2 ∴ a2 + ab + b2 = b2 + c2 + bc = c2 + a2 + ac. II. a2 + ab + b2 = b2 + bc + c2 a2 + ab – bc – c2 = 0 a2 – c2 + b (a – c) = 0 (a – c) (a + c + b) = 0 a – c = 0 or a + b + c = 0 as a – c = 0 is not possible as a, b, c are not equal. ∴ a + b + c = 0. |
|