InterviewSolution
Saved Bookmarks
| 1. |
Let A,B, C be three mutually independent events. Consider the two statements S_(1)and S_(2). {:(S_(1):A and B nnC "are independent.",),(S_(2):A and B nnC "are independent.",):} Then |
|
Answer» <P>both `S_(1) and S_(2)` are true `P(AnnB)=P(A)P(B)` `P(BnnC)=P(B)P(C)` `P(CnnA)=P(C)P(A)` `P(AnnBnnC)=P(A)(B)P(C)` We have, `P(Avv(BnnC)=P(A)(B)P(C)=P(A)P(B)P(C)=P(A)P(BnnC)` `impliesA and BnnC` are independent Therefore, `S_(2)` is true. Also, `P[(Ann(BUUC)]=P[(AnnB)uu(AnnB)nn(AnnC)]` `=P(AnnB)+P(AnnC)-P(AnnBnnC)` `=P(A)P(B)+P(A)P(C)-P(A)P(B)P(C)` `P(A)[P(B)+P(C)-P(B)P(C)]` `P(A)[P(B)+P(C)-P(BnnC)]` `=P(A)P(BnnC)` |
|