InterviewSolution
Saved Bookmarks
| 1. |
Let `Aa n dB`be two non-empty sets having `n`elements in common, then prove that `AxxBa n dBxxA`have `n^2`elements in common.A. 2nB. nC. `n^(2)`D. none of these |
|
Answer» Correct Answer - C We know that `(AxxB)nn(CxxD)=(AnnC)xx(BnnD)` `therefore (AxxB)nn(BxxA)=(AnnB)xx(BnnA)` `implies (AxxB)nn(BxxA)=(AnnB)xx(AnnB)` It is given that `AnnB` has n elements. `therefore (AnnB)xx(AnnB)` has `n^(2)` elements. But, `(AxxB)nn(BxxA)=(AnnB)xx(AnnB)` `therefore (AxxB)nn(BxxA)` has `n^(2)` elements in common. |
|