1.

Let `Aa n dB`be two non-empty sets having `n`elements in common, then prove that `AxxBa n dBxxA`have `n^2`elements in common.A. 2nB. nC. `n^(2)`D. none of these

Answer» Correct Answer - C
We know that
`(AxxB)nn(CxxD)=(AnnC)xx(BnnD)`
`therefore (AxxB)nn(BxxA)=(AnnB)xx(BnnA)`
`implies (AxxB)nn(BxxA)=(AnnB)xx(AnnB)`
It is given that `AnnB` has n elements.
`therefore (AnnB)xx(AnnB)` has `n^(2)` elements.
But, `(AxxB)nn(BxxA)=(AnnB)xx(AnnB)`
`therefore (AxxB)nn(BxxA)` has `n^(2)` elements in common.


Discussion

No Comment Found

Related InterviewSolutions