InterviewSolution
Saved Bookmarks
| 1. |
Let ABC be an acute angled triangle with orthocenter H.D, E, and F are the feet of perpendicular from A,B, and C, respectively, on opposite sides. Also, let R be the circumradius of DeltaABC. Given AH.CH = 3 and (AH)^(2) + (BH)^(2) + (CH)^(2) = 7 Then answer the following Value of HD.HF is |
|
Answer» `(9)/(64R^(3))` `BH = 2R cos B` `CH = 2R cos C` `HD = 2R cos B cos C` `HE = 2R cos A cos C` `HF = 2R cos A cos B` Now `AH.BH.CH = 3` (given) `rArr COSA . cos B . cos C = (3)/(8R^(3))` ...(i) Now `AH^(2) + BH^(2) + CH^(2) = 7` (given) `rArr 4R^(2) SIGMA cos^(2) A = 7` or `Sigma cos^(2) A = (7)/(4R^(2)` Now we know `cos^(2)A + cos^(2)B + cos^(2) C = 1-2 cos A cos B cos C` `(7)/(4R^(2)) = 1 -2 xx (3)/(8R^(3))` or `4R^(3) - 7R -3 = 0` or `(R + 1) (2R +1) (2R - 3) = 0` or `R = (3)/(2)` Now `HD.HE.HF` `= (2R cos B cos C) (2R cos A cos C) (2R cos A cos B)` `=8R^(3) cos^(2) A cos^(2) B cos^(2)C` `=8R^(3) xx (9)/(64R^(6)) = (9)/(8R^(3))` |
|