1.

Let ABC is be a fixed triangle and P be veriable point in the plane of triangle ABC. Suppose a,b,c are lengths of sides BC,CA,AB opposite to angles A,B,C, respectively. If a(PA)^(2) +b(PB)^(2)+c(PC)^(2) is minimum, then point P with respect to DeltaABC is

Answer»

centroid
circumcentre
orthocenter
INCENTRE

Solution :Let `A(x_(1),y_(1)), B(x_(2),y_(2)),C(x_(3),y_(3))` and `P(h,k)` be the POINTA. Now, `aAP^(2)+b BP^(2)+c CP^(2)`
`=a[(h-x_(1))^(2)+(k-y_(1))^(2)] +b[(h-x_(2))^(2)+(k-y_(2))^(2)] +c [(h-x_(2))^(2)+(k-y_(3))^(2)]`
`= [h^(2)(a+b+c) -2H(ax_(1)+bx_(2)+cx_(3))+(ax_(1)^(2)+bx_(2)^(2)+cx_(3)^(2))]`
`+[k^(2)(a+b+c)-2k(ay_(1)+by_(2)+cy_(3))+(ay_(1)^(2)+by_(2)^(2)+cy_(3)^(2))]`
which is minimum when ` = (ax_(1)+bx_(2)+cx_(3))/(a+b+c), k =(ay_(1)+by_(2)+cy_(3))/(a+b+c)` So, P is incentre of `DeltaABC`.


Discussion

No Comment Found

Related InterviewSolutions