1.

Let ABCD be a square two of whose adjacent vertices, say A, B on the positive X-axis and the positive Y-axis, respectively. If C has co-coordinates (u,v) in the first quadrant, determine the area of ABCD in terms of u and v.

Answer» `AB=sqrt(a^2+b^2`
`m_(AD)=-b/a`
`m_(BC)=a/b= tantheta`
`sintheta=a/sqrt(a^2+b^2),costheta=b/sqrt(a^@+b^2`
`(x-0)/costheta=(y-b)/sintheta=sqrt(a^2+b^2`
`U=b,V-b=a`
`V=a+b`
`a=(V-U)`
Side=`sqrt(V^2-2UV+U^2+U^2`
`Area=side^2`
`=V^2-2UV+2U^2`.


Discussion

No Comment Found

Related InterviewSolutions