

InterviewSolution
Saved Bookmarks
1. |
Let ABCD be a square two of whose adjacent vertices, say A, B on the positive X-axis and the positive Y-axis, respectively. If C has co-coordinates (u,v) in the first quadrant, determine the area of ABCD in terms of u and v. |
Answer» `AB=sqrt(a^2+b^2` `m_(AD)=-b/a` `m_(BC)=a/b= tantheta` `sintheta=a/sqrt(a^2+b^2),costheta=b/sqrt(a^@+b^2` `(x-0)/costheta=(y-b)/sintheta=sqrt(a^2+b^2` `U=b,V-b=a` `V=a+b` `a=(V-U)` Side=`sqrt(V^2-2UV+U^2+U^2` `Area=side^2` `=V^2-2UV+2U^2`. |
|