InterviewSolution
Saved Bookmarks
| 1. |
Let ABCD is a rectangle with AB=a & BC=b & circle is drawn passing through A & B and touching side CD. Another circle is drawn passing through B & C and touching side AD. Let r_(1) & r_(2) be the radii of these two circle respectively. Minimum value of (r_(1)+r_(2) equals |
|
Answer» `5/8 (a-b)` `AP_(1)=a//2` `r_(1)^(2)=x_(1)^(2)+(a/2)^(2)=(b-x_(1))^(2)` `x_(1)^(2)+(a^(2))/4=b^(2)+x_(1)^(2)-2bx_(1)` `x_(1)=(4b^(2)-a^(2))/(8b)` `r_(1)=b-x_(1)=(4b^(2)+a^(2))/(8b)` SIMILARLY `r_(2)=(4A^(2)+b^(2))/(8a)` `r_(1)+r_(2)=(a^(3)+b^(3)+4ab(a+b))/(8AB)` `implies((a+b)(a^(2)+3ab+b^(2)))/(8ab)` `=((a+b)/8)([(a-b)^(2)+5ab])/(AB)` But `(a-b)^(2)ge0` `r_(1)+r_(2)GE((a+b))/8.(5ab)/(ab)` `impliesr_(1)+r_(2)ge(5(a+b))/8` |
|