1.

Let (dy)/(dx) + y = f(x) where y is a continuous function of x with y(0) = 1 and f(x) = {{:(e^(-x), if o le x le 2),(e^(-2),if x gt 2):} Which of the following hold(s) good ?

Answer»

`y(1) = 2e^(-1)`
`y'(1) = -e^(-1)`
`y(3) = -2e^(-3)`
`y'(3) = -2e^(-3)`

Solution :`(dy)/(dx)+y = f(x)` is linear differential equation.
`I.F. = e^(x)`
`therefore"""Solution is ye"^(x) = INT e^(x) f(x) dx + C`
now if `0 LE x le 2` then `ye^(x) = int e^(x) e^(-x) dx + C`
`rArr""ye^(x) = x + C`
`y(0) = 1, rArr C = 1`
`therefore""ye^(x) = x + 1`
`therefore""y=(x+1)/(e^(x))`,
`therefore""y(1) = (2)/(e)`
Also y' = `y'=(e^(x)-(x+1)e^(x))/(e^(2x))`
`rArr""y'(1) = (e-2e)/(e^(2))=(-e)/(e^(2))=-(1)/(e)`
If x `gt` 2
`ye^(x) = int e^(x-2) dx`
`therefore""ye^(x) = e^(x-2) + C`
`therefore""y = e^(-2) + Ce^(-x)`
As y is continuous
`therefore""underset(x rarr 2)("lim")(x+1)/(e^(x))=underset(x rarr 2)("lim")(e^(-2)+ Ce^(-x))`
`therefore""3e^(-2) = e^(-2) + Ce^(-2) rArr C = 2`
`therefore"""for x" gt 2`
`y=e^(-2) + 2e^(-x)`
`rArr""y(3) = 2e^(-3)+e^(-2) = e^(-2) (2e^(-1)+1)`
`rArr""y'= -2e^(-x)`
`rArr""y'(3) = - 2e^(-3)`


Discussion

No Comment Found

Related InterviewSolutions