1.

Let f be a real valued periodic function defined for all real umbers x such that for some fixed ` a gt 0` , `f(x+a)=(1)/(2)+sqrt(f(x)-{f(x)}^(2))` for all x . Then , the period of f(x) isA. aB. 2aC. 3aD. 4a

Answer» Correct Answer - B
We have ,
`f(x+a)=(1)/(2)+sqrt(f(x)-{f(x)}^(2))`
`:. f(x+a+a)=(1)/(2)+sqrt(f(x+a)-{f(x+a)}^(2))`
`implies f(x+2a)=(1)/(2)+sqrt(f(x+a){1-f(x+a)})`
`impliesf(x+2a)=(1)/(2)+ sqrt({(1)/(2)+sqrt(f(x)-{f(x)}^(2))}{(1)/(2)-sqrt(f(x)-{f(x)}^(2))})`
`implies f(x+2a)+(1)/(2)+sqrt((1)/(4)-{f(x)-{f(x)}^(2)})`
`implies f(x+2a)=(1)/(2)+sqrt((1)/(4)-f(x)+{f(x)}^(2))`
`implies f(x+2a)=(1)/(2)+sqrt({f(x)-(1)/(2)}^(2))`
`implies f(x+2a)=(1)/(2)+|f(x)-(1)/(2)|" "[ :. sqrt(x^(2))=|x|]`
`implies f(x+2a)=(1)/(2)+f(x)-(1)/(2)" " [ :. f(x) ge (1)/(2)]`
`implies f(x+2a)=f(x)` for all x .
Hence, f(x) is a periodic function with period 2a.


Discussion

No Comment Found

Related InterviewSolutions