1.

Let f be a twice differentiable function defined on R such that f(0)=1, f′(0)=2 and f′(x)≠0 for all x∈R. If ∣∣∣f(x)f′(x)f′(x)f′′(x)∣∣∣=0, for all x∈R, then the value of f(1) lies in the interval

Answer»

Let f be a twice differentiable function defined on R such that f(0)=1, f(0)=2 and f(x)0 for all xR. If f(x)f(x)f(x)f′′(x)=0, for all xR, then the value of f(1) lies in the interval



Discussion

No Comment Found