InterviewSolution
Saved Bookmarks
| 1. |
Let f(h) be a function continuous ∀ h∈R−{0} such that f′(h)<0, ∀ h∈(−∞,0) and f′(h)>0, ∀ h∈(0,∞). If limh→0+f(h)=3, limh→0−f(h)=4 and f(0)=5, then the image of the point (0,1) about the line, y⋅limh→0f(cos3h−cos2h)=x⋅limh→0f(sin2h−sin3h), is |
|
Answer» Let f(h) be a function continuous ∀ h∈R−{0} such that f′(h)<0, ∀ h∈(−∞,0) and f′(h)>0, ∀ h∈(0,∞). If limh→0+f(h)=3, limh→0−f(h)=4 and f(0)=5, then the image of the point (0,1) about the line, y⋅limh→0f(cos3h−cos2h)=x⋅limh→0f(sin2h−sin3h), is |
|