1.

Let f(h) be a function continuous ∀ h∈R−{0} such that f′(h)<0, ∀ h∈(−∞,0) and f′(h)>0, ∀ h∈(0,∞). If limh→0+f(h)=3, limh→0−f(h)=4 and f(0)=5, then the image of the point (0,1) about the line, y⋅limh→0f(cos3h−cos2h)=x⋅limh→0f(sin2h−sin3h), is

Answer»

Let f(h) be a function continuous hR{0} such that f(h)<0, h(,0) and f(h)>0, h(0,). If limh0+f(h)=3, limh0f(h)=4 and f(0)=5, then the image of the point (0,1) about the line, ylimh0f(cos3hcos2h)=xlimh0f(sin2hsin3h), is



Discussion

No Comment Found