InterviewSolution
Saved Bookmarks
| 1. |
Let f(x) be a non-positive continuous function and F(x)=int_(0)^(x)f(t)dt AA x ge0 and f(x) ge cF(x) where c lt 0 and let g:[0, infty) to R be a function such that (dg(x))/(dx) lt g(x) AA x gt 0 and g(0)=0 The total number of root(s) of the equation f(x)=g(x) is/ are |
|
Answer» `infty` Now, `f(x) ge cF(x)` or `e^(-cx)F^(')(x) -ce^(-cx)F(x) ge0` THUS, `e^(-cx)F(x)` is an increasing function `therefore e^(-cx) F(x) ge e^(-c(0))F(0)` or `e^(-cx)F(x) ge` or `F(x) ge0` [as `f(x) ge cF(x)` and c is POSITIVE. Also, `(dg(x))/(dx) lt g (x) AA x gt 0` or `(d/(dx)) e^(-x)g(x) lt 0` Thus, `e^(-x)g(x)` has ONE solution, `x=0` |
|