InterviewSolution
Saved Bookmarks
| 1. |
Let f(X) be real valued continous funcion on R defined as f(X) =x^(2)e^(-|x|) The values of k for which the equation x^(2)e^(-|x|)=k has four real roots are |
|
Answer» `0ltklte` `therefore f(X) ={{:(e^(-x)(2x-x^(2)),xge0),(e^(x)(x^(2)+2x),xlt0):}` F(x) increasing in `(-oo,-2)CUP(0,2)` and f(x) DECREASING `(-2,0)cup(2,o)` THUS `f(x)={{:(e^(-x)(x^(2)-4x+2),xge0),(e^(x)(x^(2)+4x+2y),xlt0):}` f(x)=0 has FOUR roots hence there are four points of inflection |
|