1.

Let f : X → Y be an invertible function. Show that the inverse of f1 is f, i.e., that (f -1)-1 = f

Answer»

Let f : X → Y is invertible 

⇒ f is one and onto and 

f-1 : Y ⇒ X is defined as f-1(y) = x 

y : f (x) ∀ x ∈ X and y ∈ Y 

let y1,y2∈ y f-1 (y1) = f-2(y2

fof1 (y1) = fof1 (y2) 

Iy (y1) = Iy(y2

⇒ y1 = y2∴ f1 is one-one 

∀ x ∈ X, ∋ y ∈ Y such that 

f1(y) = x, hence f1 is onto 

hence invertible. 

let g = (f1)-1 

gof-1 = Iy and f-1og = lx 

∀ x ∈ X, Ix (x) = x 

fof-1(x) = f-1 [g(x)] = x 

fof-1 [g (x)] = f (x) 

(fof-1) (g (x)) = f (x) 

g(x) = f (x) 

g = f 

(f-1)-1 = f



Discussion

No Comment Found