1.

Let nge3 be an integer. For a permutaion sigma=(a_(1),a_(2),.....,a_(n)) of (1,2,.....,n) we let f_(sigma)(x)=a_(n)X^(n-1)+a_(n-1)X^(x-2)+....+a_(2)x+a_(1). Let S_(sigma) be the sum of the roots of f_(sigma)(x)=0 and let S denote the sum over all permutations sigma of (1,2,.....,n) of the numbers S_(sigma). Then-

Answer»

`Slt0n!`
`-N!ltSlt0`
`0lt Slt n!`
`n!leS`

SOLUTION :`S=-[(lambda-a_(n))/(a_(jn))+(lambda-a_(n-1))/(a_(n-1))+.....+(lambda-a_(1))/(a_(1))]`
`AAlambda=a_(1)+a_(2)+....+a_(n)`
`S=-[(a_(1)+a_(2)+....+a_(n))((1)/(a_(1))+(1)/(a_(2))+.....+(1)/(a_(n)))-n]`
`S=n-(a_(1)+a_(2)+....+a_(n))((1)/(a_(1))+(1)/(a_(2))+.....+(1)/(a_(n)))`
FOM `A.M.geH.M`
`(a_(1)+a_(2)+....+a_(n))((1)/(a_(1))+(1)/(a_(2))+.....+(1)/(a_(n)))GEN^(2)`
`Sle-n(n-1)`


Discussion

No Comment Found

Related InterviewSolutions