1.

let `P_(1)=[(1,0,0),(0,1,0),(0,0,1)],P_(2)=[(1,0,0),(0,0,1),(0,1,0)],P_(3)=[(0,1,0),(1,0,0),(0,0,1)],P_(4)=[(0,1,0),(0,0,1),(1,0,0)],P_(5)=[(0,0,1),(1,0,0),(0,1,0)],P_(6)=[(0,0,1),(0,1,0),(1,0,0)]` and `X=sum_(k=1)^(6) P_(k)[(2,1,3),(1,0,2),(3,2,1)]P_(k)^(T)` Where `P_(k)^(T)` is transpose of matrix `P_(k)`. Then which of the following options is/are correct?A. X is a symmetric matrixB. if `X=[(1),(1),(1)]=alpha[(1),(1),(1)]`, then `alpha=30`C. X-30I is an invertible matrixD. The sum of diagonal entries of X is 18.

Answer» Correct Answer - A::B::D
Clearly `P_(1)=P_(1)^(T)=P_(1)^(-1)`
`P_(2)=P_(2)^(T)=P_(2)^(-1)`
.
.
.
`P_(6)=P_(6)^(T)=P_(6)^(-1)`
And `A^(T)=A` where `A=[(2,1,3),(1,0,2),(3,2,1)]`
Using formula `(A+B)^(T)=A^(T)+B^(T)`
`X^(T)=(P_(1)AP_(1)^(T)+ . . . .+P_(6)AP_(6)T)^(T)=P_(1)A^(T)P_(1)^(T)+ . . . . . +P_(6)A^(T)P_(6)^(T)=XimpliesX` is symmetric
Let `B=[(1),(1),(1)]`
`XB=P_(1)AP_(1)^(T)B+P_(2)AP_(2)^(T)B+. . . .+P_(6)AP_(6)^(T)B=P_(1)AB+PAB+. . . . +P_(6)AB`
`XB=(P_(1)+P_(2)+. . . .+P_(6))[(6),(3),(6)]`
`=[(6xx2+3xx2+6xx2),(6xx2+3xx2+6xx2),(6xx2+3xx2+6xx2)]=[(30),(30),(30)]=30Bimpliesalpha=30`
since X`[(1),(1),(1)=30[(1),(1),(1)]`
`implies(X-30I)B=0` has a non trivial solution `B=[(1),(1),(1)]`
`implies|X-30I|=0`
`X=P_(1)P_(1)AP_(1)^(T)+. . . .+P_(6)AP_(6)^(T)`
trace `(x)=t_(r)(P_(1)AP_(1)^(T))+. . . . .+t_(r)(P_(6)AP_(6)^(T))=(2+0+1)+. . . . +(2+0+1)=3xx6=18`


Discussion

No Comment Found

Related InterviewSolutions