InterviewSolution
Saved Bookmarks
| 1. |
Let P(4,-4) and Q(9,6) be points on the parabola y^(2)=4a(x-b). Let R be a point on the arc of the parabola between P and Q. Then the area of DeltaPQR is largest when. |
|
Answer» `anglePRQ=(pi)/(2)` `implies 16=4a(4-b)` and `36=4a(9-b)impliesa=1,b=0` `therefore` Equation of PARABOLA is `y^(2)=4x` Let the point R be `(t^(2),2T)`, where `t in(-2,3)` `thereforeDeltaPQR=(1)/(2)|(4,-4,1),(9,6,1),(t^(2),2t,1)|` `DeltaPQR=(1)/(2)|10t-10t^(2)+60|=(1)/(4)|125-5(2t-1)^(2)|` `therefore` Area is largest when `t=(1)/(2){becauset in (-2,3)}` `thereforeR(t^(2),2t)=R((1)/(4),1)` |
|