1.

Let `S={(x,y) in R^(2):(y^(2))/(1+r)-(x^(2))/(1-r)=1}`, where `r ne pm 1`. Then S represents:A. a hyperbola whose eccentricity is `(2)/(sqrt(1-r)),` when `0 lt r lt 1.`B. a hyperbola whose eccentricity is `(2)/(sqrt(r+1)),` when `0 lt r lt 1.`C. an ellipse whose eccentricity is `sqrt((2)/(r+1)) " when "r gt 1`.D. an ellipse whose eccentricity is `(1)/(sqrt(r+1)) " when "r gt 1`.

Answer» Given, `S={(x,y) in R^(2): (y^(2))/(1+r)-(x^(2))/(1-r)=1}`
`={(x,y) in R^(2): (y^(2))/(1+r)+(x^(2))/(r-1)=1}`
For `r gt 1,(y^(2))/(1+r)+(x^(2))/(r-1)=1`, represents a vertical ellipse.
`" "[ because " for " r gt 1, r-1 lt r+1 and r-1 gt 0]`
Now, eccentricity (e)`=sqrt(1-(r-1)/(r+1))`
`[ because " For " (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, a lt b, e -sqrt(1-(a^(2))/(b^(2)))]`
`=sqrt(((r+1)-(r-1))/(r+1))`
`=sqrt((2)/(r+1))`


Discussion

No Comment Found

Related InterviewSolutions