1.

Let the incircle of a Delta ABC touches sides BC, CA and AB at D,E and F, respectively. Let area of Delta ABC be Delta and thatof DEF be Delta'. If a, b and c are side of Dela ABC, then the value of abc(a+b+c)(Delta')/(Delta^(3)) is

Answer»

1
2
3
4

Solution :
Clearly points C, D, I and E are concyclic
`therefore angle EID = pi - C`
`therefore` In `Delta DEF, angle DFE =(pi-C)/(2)`
Similarly `angle EDF =(pi-A)/(2)` and `angle FED = (pi-B)/(2)`
`Delta' =2R^(2)SIN((pi-A)/(2))sin((pi-B)/(2))sin((pi-C)/(2))`
`=2r^(2)cos((A)/(2))cos((B)/(2))cos((C )/(2))`
`therefore abc (a+b+c)(Delta')/(Delta^(3))`
`=(abc(a+b+c))/(Delta^(3))2r^(2)cos.(A)/(2)cos.(B)/(2)cos.(C )/(2)`
`=(abc(2s))/(Delta^(3))2r^(2)cos.(A)/(2)cos.(B)/(2)cos.(C )/(2)`
`=(abc(2s))/(Delta^(3))2r^(2)sqrt((s(s-a))/(bc))sqrt((s(s-b))/(ab))sqrt((s(s-c))/(ac))`
`=(4abcs)/(Delta^(3))r^(2)(s)/(abc)sqrt(s(s-a)(s-b)(s-c))`
`=(4S^(2))/(Delta^(2))r^(2)`
= 4.


Discussion

No Comment Found

Related InterviewSolutions