1.

Let u = x2 y3 cos(\(\frac{x}{y}\)). By using Euler’s theorem show that \(x.\frac{∂u}{∂x}+y.\frac{∂u}{∂y}\)

Answer»

Given, u = x2 y3 cos(\(\frac{x}{y}\)

i.e., u(tx, ty) = (tx)2 (ty)3 cos\((\frac{tx}{ty})\) 

= t2 x2 t3 y3 cos(\(\frac{x}{y}\)

= tx2 y3 cos(\(\frac{x}{y}\)

= t5

∴ u is a homogeneous function in x and y of degree 5. 

∴ By Euler’s theorem, \(x.\frac{∂u}{∂x}+y.\frac{∂u}{∂y}\) = 5u

Hence Proved.



Discussion

No Comment Found