InterviewSolution
Saved Bookmarks
| 1. |
Let x be a real number , [x] denotes the greatest integer function, {x} denotes the fractional part and (x) denotes the least integer function, then solve the following: "(i)" (x)^(2)=[x]^(2)+2x "" (ii) [2x]--2x=[x+1] "(iii)" [x^(2)]+2[x]=3x, 0 le x le 2 "(iv)" y=4-[x]^(2) and [y]+y=6 "(v)" [x]+abs(x-2) le 0 " and " -1 le x le 3 |
|
Answer» (iv) {1,-1, `pm` 1+k, where k is any positive proper fraction} (v) no solution |
|