1.

Let x be a real number , [x] denotes the greatest integer function, {x} denotes the fractional part and (x) denotes the least integer function, then solve the following: "(i)" (x)^(2)=[x]^(2)+2x "" (ii) [2x]--2x=[x+1] "(iii)" [x^(2)]+2[x]=3x, 0 le x le 2 "(iv)" y=4-[x]^(2) and [y]+y=6 "(v)" [x]+abs(x-2) le 0 " and " -1 le x le 3

Answer»


Answer :(i) 0, `n+1/2` where n `in` Z(II) `{-1,-1/2}` (III) {0,1}
(iv) {1,-1, `pm` 1+k, where k is any positive proper fraction}
(v) no solution


Discussion

No Comment Found

Related InterviewSolutions