1.

Let y=f(x), f:R→R be an odd differentiable function such that f′′′(x)>0 and g(α,β)=sin8α+cos8β+2−4sin2αcos2β. If f′′(g(α,β))=0, then sin2α+sin2β is equal to

Answer»

Let y=f(x), f:RR be an odd differentiable function such that f′′′(x)>0 and g(α,β)=sin8α+cos8β+24sin2αcos2β. If f′′(g(α,β))=0, then sin2α+sin2β is equal to




Discussion

No Comment Found