InterviewSolution
Saved Bookmarks
| 1. |
Let y=f(x), f:R→R be an odd differentiable function such that f′′′(x)>0 and g(α,β)=sin8α+cos8β+2−4sin2αcos2β. If f′′(g(α,β))=0, then sin2α+sin2β is equal to |
|
Answer» Let y=f(x), f:R→R be an odd differentiable function such that f′′′(x)>0 and g(α,β)=sin8α+cos8β+2−4sin2αcos2β. If f′′(g(α,β))=0, then sin2α+sin2β is equal to |
|