1.

Let z_(1),z_(2),z_(3) be the three nonzero comple numbers such thatz_(2) ne 1, a= |z_(1)|, b = |z_(2)| and c= |z_(3)|. Let |{:(,a,b,c),(,b,c,a),(,c,a,b):}|= 0 Then

Answer»

`arg((z_(3))/(z_(2))) = arg((z_(3)-z_(1))/(z_(2)-z_(1)))`
ortho centre of triangleformed by `z_(1),z_(2),z_(3)` is `z_(1)+z_(2)+z_(3)`
if trinagleformed by `z_(1),z_(2),z_(3) ` is `z_(1)+z_(2)+z_(3)` is `(3sqrt(3))/(2)|z_(1)|^(2)`
if triangleformed by `z_(1),z_(2),z_(3)` is equlateral, then `z_(1)+z_(2)+z_(3)=0`

Solution :Given `|{:(,a,b,c,),(,b,c,a,),(,c,a,b,):}|=0`
`rArr a^(3) + b^(3) + c^(3) - 3abc = 0`
`rArr (a+b+c)(a^(2) + b^(2) + c^(2) - ab -ab-ca)=0`
`rArr (1)/(2)(a+b+c)[(a-b)^(2) + (c-a^(2)) = 0`
`rArr (a-b)^(2) + (b-c)^(2) + (c-a)^(2) = 0`
`rArr a=b=c [ therefore a+b + c ne 0, because z_(1) ne 0, therefore|z_(1)| = a ne 0 etc.]`
Hence, `OA= OB = OC`, where O is the ORIGIN and A, B, C arethe points represeniting `z_(1),z_(2)` and `z_(3)` respectively . Therefore ,O is circumcenter of `Delta ABC `. Now

`arg((z_(3))/(z_(2)))= /_BOC""(1)`
`=2 /_BAC = 2 arg((z_(3)-z_(1))/(z_(2)-z_(1))) ""(2)`
`arg ((z_(3)-z_(1))/(z_(2)-z_(1)))""[because /_BOC = 2/_ BAC]`
Hence, `arg((z_(3))/(z_(2))) =arg((z_(3)-z_(1))/(z_(2)-z_(1)))^(2)`
Also, centroid is `(z_(1) +z_(2) +z_(3))//3`. Since HG: GO -= 2:1
(where H isorthocenter and G is centroid),then orthocentre is `z_(1) + z_(2) +z_(3)` (by sectionformula). When triangle is equilateral centroid conicides with circumcenter, hence `z_(1) + z_(2) +z_(3)= 0`
Also, the area for equilateral triangle is `(sqrt(3)//4L)`, where Lis lenghtof side. Since radius is `|z_(1)|,L = sqrt(3)|z_(1)|`, the area is `(3sqrt(3)//4)|z_(1)|`


Discussion

No Comment Found

Related InterviewSolutions