1.

Prove that  \(\int\limits_0^{\pi/2}(sin\,x-cos\,x)log(sin\,x+cos\,x)dx=0\)∫ (sin x- cos x)log(sin x+ cos x)dx=0, x ∈[0,π/2]

Answer»

Let, sin x + cos x = t 

⇒ cos x – sin x dx = dt 

At x = 0, t = 1 

At x = π/2, t = 1

\(y=\int\limits_0^{1}-logt\,dt\)

We know that when upper and lower limit in definite integral is 

equal then value of integration is zero. 

So, y = 0



Discussion

No Comment Found