InterviewSolution
Saved Bookmarks
| 1. |
Prove that `.^(n)C_(r )+.^(n-1)C_(r )+..+.^(r )C_(r )=.^(n+1)C_(r+1)` |
|
Answer» `.^(r )C_(r ) + .^(r+1)C_(r ) + .^(r+2)C_(r) +.. + .^(n-1)C_(r )+ .^(n)C_(r )` `.^(r+1 )C_(r+1 )+ .^(r+1)C_(r )+ .^(r+2)C_(r ) +.. + .^(n-1)C_(r )+ .^(n)C_(r )` `= .^(r+1)C_(r+1) + .^(r+1)C_(r ) +.. + .^(n+1)C_(r )+ .^(n)C_(r )` `= .^(r+3)C_(r+1) +..+ .^(n-1)C_(r ) + .^(n)C_(r )` On adding similar way, we get L.H.S. `= .^(n-1)C_(r+1)+ .^(n-1)C_(r ) + .^(n)C_(r )` `= .^(n)C_(r+1) + .^(n)C_(r )` `= .^(n+1)C_(r+1)=R.H.S.` |
|