Saved Bookmarks
| 1. |
Prove that: sin2B = sin2A + sin2(A-B) – 2sinA cosB sin(A-B) |
|
Answer» RHS = sin2A + sin2(A -B) – 2 sinA cosB sin(A -B) = sin2A + sin(A -B) [sin(A –B) – 2 sinA cosB] We know that sin(A –B) = sinA cosB – cosA sinB = sin2A + sin(A -B) [sinA cosB – cosA sinB – 2 sinA cosB] = sin2A + sin(A -B) [-sinA cosB – cosA sinB] = sin2A - sin(A -B) [sinA cosB + cosA sinB] We know that sin(A +B) = sinA cosB + cosA sinB = sin2A – sin(A –B) sin(A +B) = sin2A – sin2A + sin2B = sin2B = LHS Hence proved |
|