1.

Prove that: sin2B = sin2A + sin2(A-B) – 2sinA cosB sin(A-B)

Answer»

RHS = sin2A + sin2(A -B) – 2 sinA cosB sin(A -B) 

= sin2A + sin(A -B) [sin(A –B) – 2 sinA cosB] 

We know that sin(A –B) = sinA cosB – cosA sinB 

= sin2A + sin(A -B) [sinA cosB – cosA sinB – 2 sinA cosB] 

= sin2A + sin(A -B) [-sinA cosB – cosA sinB] 

= sin2A - sin(A -B) [sinA cosB + cosA sinB] 

We know that sin(A +B) = sinA cosB + cosA sinB 

= sin2A – sin(A –B) sin(A +B) 

= sin2A – sin2A + sin2

= sin2B = LHS 

Hence proved



Discussion

No Comment Found