Saved Bookmarks
| 1. |
Prove that:\(\tan^{-1}\left(\frac{3\mathrm x-\mathrm x^3}{1-3\mathrm x^2}\right)=3\tan^{-1}\mathrm x,|\mathrm x|<\frac{1}{\sqrt{3}}\) |
|
Answer» To Prove: \(\tan^{-1}\left(\frac{3\mathrm x-\mathrm x^3}{1-3\mathrm x^2}\right)=3\tan^{-1}\mathrm x\) Formula Used: \(\tan3A=\frac{3\tan A-tan^2A}{1-3\tan^2A}\) Proof: LHS \(=\tan^{-1}\left(\frac{3\mathrm x-\mathrm x^2}{1-3\mathrm x^2}\right)\)… (1) Let x = tan A … (2) Substituting (2) in (1), LHS \(=\tan^{-1}\left(\frac{3\tan A-tan^2a}{1-3\tan^2A}\right)\) = tan -1 (tan 3A) = 3A From (2), A = tan -1 x, 3A = 3 tan -1 x = RHS Therefore, LHS = RHS Hence proved. |
|