1.

Prove that:\(\tan^{-1}\left(\frac{3\mathrm x-\mathrm x^3}{1-3\mathrm x^2}\right)=3\tan^{-1}\mathrm x,|\mathrm x|<\frac{1}{\sqrt{3}}\)

Answer»

To Prove: \(\tan^{-1}\left(\frac{3\mathrm x-\mathrm x^3}{1-3\mathrm x^2}\right)=3\tan^{-1}\mathrm x\)

Formula Used: \(\tan3A=\frac{3\tan A-tan^2A}{1-3\tan^2A}\)

Proof: 

LHS \(=\tan^{-1}\left(\frac{3\mathrm x-\mathrm x^2}{1-3\mathrm x^2}\right)\)… (1) 

Let x = tan A … (2) 

Substituting (2) in (1), 

LHS \(=\tan^{-1}\left(\frac{3\tan A-tan^2a}{1-3\tan^2A}\right)\)

= tan -1 (tan 3A) 

= 3A 

From (2), A = tan -1 x, 

3A = 3 tan -1

= RHS 

Therefore, LHS = RHS 

Hence proved.



Discussion

No Comment Found