InterviewSolution
Saved Bookmarks
| 1. |
Prove that the centre of the circle circumscribing the cyclic rectangle ABCD is the point of intersection of its diagonals. |
|
Answer» Let O be the circle circumscribing the cyclic rectangle ABCD. Since, ∠ABC = 90°and AC is the chord of the circle. Similarly, BD is a diameter Hence, Point of intersection of AC and BD is the centre of the circle. |
|