InterviewSolution
 Saved Bookmarks
    				| 1. | 
                                    Prove that the function f defined by f(x) ={{:((x)/(|x|+2x^(2)), if x ne 0),(k,if x = 0):}remainsdiscontinuous at x= 0,regardingsthe choice iof k. | 
                            
| 
                                   
Answer»  At `x= 0, LHL =underset(xrarr0^(-))(lim)(x)/(|x|+2x^(2)) = underset(hrarr0)(lim)((0-h))/(|0-h|+2(0-h)^(2))` `= underset(hrarr0)(lim)(-h)/(h+2h^(2))=underset(hrarr0)(lim)(-h)/(h(1+2h)) = -1` `RHL= underset(xrarr0^(+))lim(x)/(|x|+2x^(2))= underset(hrarr0)(lim)(0+h)/(|0+h|+2(0+h)^(2))` `= underset(hrarr0)(lim)(h)/(h+2h)^(2)=underset(hrarr0)(lim)(h)/(h(1+2h)) = 1` and`f(0) =k` Since, ` LHL neRHL` for anyvalue of k. Hence, `f(x)` is discountinuousat `x = 0`regardiess the choiceofk.  | 
                            |