1.

Prove that the ratio of the areas of two similar triangles is equal to the square of the ratioof their corresponding sides.29.Using the above, do the followingIn a trapezium ABCD, AC and BD intersecting at O, AB II CD, ABAAOB :-84 cm2, find the area of ΔCOD.2CD. If area of

Answer»

Given: Δ ABC ~Δ PQR

To Prove: ar(ΔABC) / ar(ΔPQR) = (AB/PQ)2= (BC/QR)2= (CA/RP)2

Construction: Draw AM⊥ BC, PN ⊥ QR

ar(ΔABC) / ar(ΔPQR) = (½× BC× AM) /(½ ×QR × PN)

= BC/QR× AM/PN ... [i]

In Δ ABM and Δ PQN,

∠B = ∠Q (Δ ABC ~ Δ PQR)

∠M = ∠N (each 90°)

So,Δ ABM ~ Δ PQN (AA similarity criterion)

Therefore, AM/PN = AB/PQ ... [ii]

But, AB/PQ = BC/QR = CA/RP (ΔABC ~ Δ PQR) ... [iii]

Hence, from (i)

ar(ΔABC) / ar(ΔPQR) = BC/QR× AM/PN

= AB/PQ× AB/PQ [From (ii) and (iii)]

= (AB/PQ)2

Using (iii)

ar(ΔABC) / ar(ΔPQR) = (AB/PQ)2= (BC/QR)2= (CA/RP)2



Discussion

No Comment Found