Saved Bookmarks
| 1. |
Prove that the ratio of the areas of two similar triangles is equal to the square of the ratioof their corresponding sides.29.Using the above, do the followingIn a trapezium ABCD, AC and BD intersecting at O, AB II CD, ABAAOB :-84 cm2, find the area of ÎCOD.2CD. If area of |
|
Answer» Given: Δ ABC ~Δ PQR To Prove: ar(ΔABC) / ar(ΔPQR) = (AB/PQ)2= (BC/QR)2= (CA/RP)2 Construction: Draw AM⊥ BC, PN ⊥ QR ar(ΔABC) / ar(ΔPQR) = (½× BC× AM) /(½ ×QR × PN) = BC/QR× AM/PN ... [i] In Δ ABM and Δ PQN, ∠B = ∠Q (Δ ABC ~ Δ PQR) ∠M = ∠N (each 90°) So,Δ ABM ~ Δ PQN (AA similarity criterion) Therefore, AM/PN = AB/PQ ... [ii] But, AB/PQ = BC/QR = CA/RP (ΔABC ~ Δ PQR) ... [iii] Hence, from (i) ar(ΔABC) / ar(ΔPQR) = BC/QR× AM/PN = AB/PQ× AB/PQ [From (ii) and (iii)] = (AB/PQ)2 Using (iii) ar(ΔABC) / ar(ΔPQR) = (AB/PQ)2= (BC/QR)2= (CA/RP)2 |
|