1.

Range of the function `f(x)=log_esqrt(4-x^2)` isA. `(0,oo)`B. `(-oo,oo)`C. `(-oo, log_(e) 2]`D. `(log_(e)2,oo)`

Answer» Correct Answer - C
Clearly , `f(x)=log_(e)sqrt(4-x^(2))` is defined for all ` x in (-2,2)`
Let y =f(x). Then,
`y=logesqrt(4-x^(2)) implies e^(2y)=4-x^(2)implies x=sqrt(4-e^(2y))`
Clearly , x is real , if
`4-e^(2y) ge 0 implies 0 lt e^(y) le 2 " "[ :. e^(y) gt 0]`
`implies -oo lt 6 le log_(e)2implies y in (-oo, log_(e)2]`


Discussion

No Comment Found

Related InterviewSolutions