

InterviewSolution
Saved Bookmarks
1. |
Referrring to the `v^(2)-s` diagram of a particle, find the displacement of the particle durticle during the last two seconds. . |
Answer» Slope of `v^(2)-s` graph` `m=-((2000-1500))/(100-50)=-10` Relation between `v_(2)` and s: `v^(2)=-10 s+C` At `s=50, v^(2)=2000` `rArr 2000=-10xx50+C rArr C=2500` `v=-10 s+2500` `rArr (2v dt)/(dt)=-10(ds)/(dt)` `rArr 2va=-10 v rArr a=-5 ms^(-2) rarr` constant To find initial velocity: Put `s=0, v=u` `rArr u^(2)=2500 rArr u=50 ms^(-1)` Apply `v=u+at` `rArr 0=50-5 T` `rArrT=10 s rarr` time of motion `Displacement during last two seconds : `S=S_(t)=10s-S_(t)=8s` `=[50 xx 10 -(1)/(2)5 (10)^(5)]-[50-(1)/(2)5(8)^(2)]=10m`. |
|