1.

Revenue function ‘R’ and cost function ‘C’ are R = 14x – x2 and C = x(x2 – 2). Find the (i) average cost (ii) marginal cost (iii) average revenue and (iv) marginal revenue.

Answer»

R = 14x – x2 and C = x(x2 – 2) 

C = x3 – 2x 

(i) Average Cost (AC) = \(\frac{Total\,cost}{Output}\) = \(\frac{C(x)}{x}\)

\(\frac{x^3-2x}{x}\)

\(\frac{x^3}{x}-\frac{2x}{x}\)

= x2 - 2

(ii) Marginal Cost (MC) = \(\frac{dC}{dx}\)

= \(\frac{d}{dx}\)(x3 – 2x) 

= \(\frac{d}{dx}\)(x3) – 2 \(\frac{d}{dx}\)(x) 

= 3x2 – 2

(iii) Average Revenue R = 14x – x2 

Average Revenue (AR) = \(\frac{Total\,Revenue}{Output}=\frac{R(x)}{x}\)

\(\frac{14x-x^2}{x}\)

\(\frac{14x}{x}-\frac{x^2}{x}\)

= 14 - x

(iv) Marginal Revenue (MR) = \(\frac{dR}{dx}\)

= \(\frac{d}{dx}\)(14x – x2

= 14 \(\frac{d}{dx}\)(x) – \(\frac{d}{dx}\)(x2

= 14(1) – 2x 

= 14 – 2x



Discussion

No Comment Found