1.

Show that 2x + y + 6 = 0 is a tangent to x2 + y2 + 2x – 2y – 3 = 0. Find its point of contact.

Answer»

Given equation of circle is 

x2 + y2 + 2x – 2y – 3 = 0 ….(i) 

Given equation of line is 2x + y + 6 = 0 y = -6 – 2x ……(ii) 

Substituting y = -6 – 2x in (i), we get 

x + (-6 – 2x)2 + 2x – 2(-6 – 2x) – 3 = 0

⇒ x2 + 36 + 24x + 4x2 + 2x + 12 + 4x – 3 = 0 

⇒ 5x2 + 30x + 45 = 0 

⇒ x2 + 6x + 9 = 0 

⇒ (x + 3)2 = 0

⇒ x = -3 

Since, the roots are equal. 

∴ 2x + y + 6 = 0 is a tangent to x2 + y2 + 2x – 2y – 3 = 0 

Substituting x = -3 in (ii), we get 

y = -6 – 2(-3) = -6 + 6 = 0 

Point of contact = (-3, 0)



Discussion

No Comment Found

Related InterviewSolutions