1.

Show that the equation \(2(a^2+b^2)\text{x}^2+2(a+b)\text{x}+1=0\) has no real roots, when a ≠ b.

Answer»

For a quadratic equation, ax2 + bx + c = 0,

D = b2 – 4ac

If D < 0, roots are not real.

\(2(a^2+b^2)\text{x}^2+2(a+b)\text{x}+1=0\)

⇒ D = 4(a + b)2 – 8(a2 + b2

⇒ D = 4a2 + 4b2 + 8ab – 8a2 – 8b

⇒ D = - 4(a2 + b2 – 2ab) = - 4(a – b)2 

Thus, D < 0 for all values of a and b. 

∴ Roots are not real.



Discussion

No Comment Found