

InterviewSolution
Saved Bookmarks
1. |
Show that the equation \(2(a^2+b^2)\text{x}^2+2(a+b)\text{x}+1=0\) has no real roots, when a ≠ b. |
Answer» For a quadratic equation, ax2 + bx + c = 0, D = b2 – 4ac If D < 0, roots are not real. \(2(a^2+b^2)\text{x}^2+2(a+b)\text{x}+1=0\) ⇒ D = 4(a + b)2 – 8(a2 + b2) ⇒ D = 4a2 + 4b2 + 8ab – 8a2 – 8b2 ⇒ D = - 4(a2 + b2 – 2ab) = - 4(a – b)2 Thus, D < 0 for all values of a and b. ∴ Roots are not real. |
|