InterviewSolution
Saved Bookmarks
| 1. |
Show that the equation `9x^(2)+7x-2=0` has roots and solve it. |
|
Answer» The given equation is `9x^(2)+7x-2=0.` Comparing it with `ax^(2)+bx+c=0`, we get `a=9,b=7" and "c=-2` `:." "D=(b^(2)-4ac)=(7^(2)-4xx9xx(-2)]=121gt0.` So, the given equation has real roots. Now, `sqrt(D)=sqrt(121)=11.` `:." "alpha=(-b+sqrt(D))/(2a)=((-7+11))/(2xx9)=(4)/(18)=(2)/(9),` `beta=(-b-sqrt(D))/(2a)=((-7-11))/(2xx9)=(-18)/(18)=-1.` Hence, the required roots are `(2)/(9)` and -1. |
|