1.

Show that the line joining the incenter to the circumcentre of triangle ABC is inclined to the side BC at an angle tan^(-1) ((cos B + cos C -1)/(sin C - sin B))

Answer»

Solution :Let `I` be the incenter and O be the circumcenter of the triangle ABC.

Let OL be PARALLEL to BC
Let `angle IOL = theta`
Now, `IM = r, OC = R, angle NOC = A`. Then
`tan theta = (IL)/(OL) = (IM- LM)/(BM- BN)`
`= (IM - ON)/(BM - NC)`
`= (r - R cos A)/(r cot. (B)/(2) - R SIN A)`
`=(4R sin.(A)/(2) sin.(B)/(2) sin.(C)/(2) - R COSA)/(4R sin.(A)/(2) sin.(B)/(2) sin.(C)/(2). cot. (B)/(2)- R sin A)`
`=(cos A + cos B + cos C - 1- cos A)/(sin A + sin C - sin B - sin A)`
`= (cos B + cos C -1)/(sin C - sin B)`
or `theta = tan^(-1) [(cos B + cos C -1)/(sin C - sin B)]`


Discussion

No Comment Found

Related InterviewSolutions