InterviewSolution
Saved Bookmarks
| 1. |
Show that the sum of an AP whose first term is a, the second term b and the last term c, is equal to `((a+c)(b+c-2a))/(2(b-a))`. |
|
Answer» Le the number of terms in A.P. =n common difference d=b-a c=nth term of the A.P. `rArr c=a+(n-1)(b-a)` `rArr c-a(n-1)(b-a)` `rArr n-1=(c-a)/(b-a)` `rArr n=(c-a)/(b-a)+1=(c-a+b-a)/(b-a)=(b+c-2a)/(b-a)` `:.` Sum of n term of A.P. `=(n)/(2)(a+l)` `=((b+c-2a))/(2(b-a))(a+c)=((a+c)(b+c-2a))/(2(b-a))` |
|