1.

सिद्ध कीजिए कि `int_(0)^(oo)(x)/((1+x)(1+x^(2))dx=(pi)/(4)`

Answer» माना `x=tan theta`
`rArr" "dx=sec^(2)thetad theta`
`{:(x=0,"पर ",tan theta=0, rArr.,theta=0),(x=oo,"पर ",tan theta=oo,rArr.,theta=(pi)/(2)):}`
माना `I=int_(0)^(oo)(x)/((1+x)(1+x^(2)))dx`
`rArr" "I=int_(0)^(pi//2)(tan theta)/((1+tan theta)(1+tan^(2)theta)).sec^(2) theta d theta`
`rArr" "I=int_(0)^(pi//2)(tan theta)/(1+tan theta)d theta" ...(1)"`
`rArr" "I=int_(0)^(pi//2)(tan((pi)/(2)-theta))/(1+tan((pi)/(2)-theta))d theta" "` [प्रगुण (4 ) से ]
`=int_(0)^(pi//2)(cot theta)/(1+cot theta)d theta=int_(0)^(pi//2)(1//tan theta)/(1+(1)/(tan theta))d theta`
`rArr" "I=int_(0)^(pi//2)(1)/(tantheta+1)d theta" ...(2)"`
समीकरण (1 ) और (2 ) को जोड़ने पर
`2I=int_(0)^(pi//2)(tan theta+1)/(tan theta+1)d theta=int_(0)^(pi//2)d theta=[theta]_(0)^(pi//2)=(pi)/(2)`
`rArr" "I=(pi)/(4)" "`यही सिद्ध करना था ।


Discussion

No Comment Found